The Edvocate

Top Menu

Main Menu

  • Start Here
    • Our Brands
    • Governance
      • Lynch Education Consulting, LLC.
      • Dr. Lynch’s Personal Website
      • Careers
    • Write For Us
    • Books
    • The Tech Edvocate Product Guide
    • Contact Us
    • The Edvocate Podcast
    • Edupedia
    • Pedagogue
    • Terms and Conditions
    • Privacy Policy
  • PreK-12
    • Assessment
    • Assistive Technology
    • Best PreK-12 Schools in America
    • Child Development
    • Classroom Management
    • Early Childhood
    • EdTech & Innovation
    • Education Leadership
    • Equity
    • First Year Teachers
    • Gifted and Talented Education
    • Special Education
    • Parental Involvement
    • Policy & Reform
    • Teachers
  • Higher Ed
    • Best Colleges and Universities
    • Best College and University Programs
    • HBCU’s
    • Diversity
    • Higher Education EdTech
    • Higher Education
    • International Education
  • Advertise
  • The Tech Edvocate Awards
    • The Awards Process
    • Finalists and Winners of The 2025 Tech Edvocate Awards
    • Finalists and Winners of The 2024 Tech Edvocate Awards
    • Finalists and Winners of The 2023 Tech Edvocate Awards
    • Finalists and Winners of The 2021 Tech Edvocate Awards
    • Finalists and Winners of The 2022 Tech Edvocate Awards
    • Finalists and Winners of The 2020 Tech Edvocate Awards
    • Finalists and Winners of The 2019 Tech Edvocate Awards
    • Finalists and Winners of The 2018 Tech Edvocate Awards
    • Finalists and Winners of The 2017 Tech Edvocate Awards
    • Award Seals
  • Apps
    • GPA Calculator for College
    • GPA Calculator for High School
    • Cumulative GPA Calculator
    • Grade Calculator
    • Weighted Grade Calculator
    • Final Grade Calculator
  • The Tech Edvocate
  • Post a Job
  • AI Powered Personal Tutor

logo

The Edvocate

  • Start Here
    • Our Brands
    • Governance
      • Lynch Education Consulting, LLC.
      • Dr. Lynch’s Personal Website
        • My Speaking Page
      • Careers
    • Write For Us
    • Books
    • The Tech Edvocate Product Guide
    • Contact Us
    • The Edvocate Podcast
    • Edupedia
    • Pedagogue
    • Terms and Conditions
    • Privacy Policy
  • PreK-12
    • Assessment
    • Assistive Technology
    • Best PreK-12 Schools in America
    • Child Development
    • Classroom Management
    • Early Childhood
    • EdTech & Innovation
    • Education Leadership
    • Equity
    • First Year Teachers
    • Gifted and Talented Education
    • Special Education
    • Parental Involvement
    • Policy & Reform
    • Teachers
  • Higher Ed
    • Best Colleges and Universities
    • Best College and University Programs
    • HBCU’s
    • Diversity
    • Higher Education EdTech
    • Higher Education
    • International Education
  • Advertise
  • The Tech Edvocate Awards
    • The Awards Process
    • Finalists and Winners of The 2025 Tech Edvocate Awards
    • Finalists and Winners of The 2024 Tech Edvocate Awards
    • Finalists and Winners of The 2023 Tech Edvocate Awards
    • Finalists and Winners of The 2021 Tech Edvocate Awards
    • Finalists and Winners of The 2022 Tech Edvocate Awards
    • Finalists and Winners of The 2020 Tech Edvocate Awards
    • Finalists and Winners of The 2019 Tech Edvocate Awards
    • Finalists and Winners of The 2018 Tech Edvocate Awards
    • Finalists and Winners of The 2017 Tech Edvocate Awards
    • Award Seals
  • Apps
    • GPA Calculator for College
    • GPA Calculator for High School
    • Cumulative GPA Calculator
    • Grade Calculator
    • Weighted Grade Calculator
    • Final Grade Calculator
  • The Tech Edvocate
  • Post a Job
  • AI Powered Personal Tutor
  • 11 Ways To Rock School Gamification Practices For All Students

  • 10 Women’s History Books for Kids in Elementary, Middle, or High School

  • How To Manage Non-Renewed Teachers As a School Leader

  • 9 Things Parents Should Never Say in an Email to Teachers

  • Print This Free Kindness Activity Guide for Your Classroom

  • Classroom Posters: Supporting English Language Learners

  • The Ultimate Guide to College Scholarships

  • These Hilarious Quotes From Students Will Have You Rolling

  • Easy Classroom Activities You Can Rinse and Repeat Using Adobe Express for Educators

  • Project-Based Learning Transforms Classroom Dynamics

EdTech & InnovationPolicy & ReformTeachers
Home›EdTech & Innovation›STEM Learning Must Go Beyond Memorizing Facts and Theories

STEM Learning Must Go Beyond Memorizing Facts and Theories

By Matthew Lynch
June 8, 2016
0
Spread the love

By Steven Korte

There is a growing global demand for science, technology, engineering and math (STEM) professionals. At the same time, experts in science education are calling for students to become more “scientifically literate.” This call, however, is about more than filling jobs.

A basic understanding of scientific concepts, processes, and ways of thinking is critical for students to succeed in the world of today and tomorrow. According to the Organisation for Economic Co-operation and Development’s 2014 report on the results of the international PISA 2012 science assessment, “An understanding of science and technology is central to a young person’s preparedness for life in modern society.”

This means that students must go beyond memorizing science facts and theories; they must gain experience with the tools and practices of science. Technology can help. While technology alone does not create scientific understanding, it represents a key tool for promoting inquiry investigations.

A substantial body of research confirms the positive impact of inquiry-based instruction on students’ understanding of science, including substantially higher learning when compared to traditional instruction. Further, education experts specify that technology is most effective in supporting student learning in science when it is used in an inquiry context. Indeed, blending technology into data collection, analysis and visualization as part of inquiry-based instruction has been shown to deepen students’ understanding, and increase their motivation and interest in science.

Districts transitioning to or implementing STEM programs should consider the following points:

  • Lab investigations and technology tools should be connected with classroom experiences, including lectures, readings and discussions. Lab experiences and technology are much more effective when fully integrated into the curriculum and the flow of classroom science lessons.
  • Whether teachers choose to use a structured, guided or open inquiry format, lab activities should give students the opportunity to apply the scientific process to their learning. These activities should allow them to question and investigate; make predictions; collect, analyze and interpret data; refine their questions; and engage in argumentation from evidence. This builds problem-solving and higher-order thinking skills, as well as “soft skills” such as communication and collaboration.
  • Inquiry-based investigations inside and outside the classroom should engage students in real-life scientific and engineering practices. Students should also have the opportunity to use real-world tools to make data meaningful for them while they “do” science.
  • Traditional labs can be time-consuming and classroom sets of industry equipment can be prohibitively expensive. Be sure that lab investigations and technology tools are specifically designed for instructional use to save time and money, and reduce frustration. For example, traditional cell respiration labs are typically complex and inaccurate. In a respiration lab activity built to facilitate student understanding, the setup for a carbon dioxide or oxygen gas sensor should be simple, so accurate data can collected in minutes with minimal frustration.
  • To maximize your technology investment, make sure tools such as sensors and probes are compatible with any classroom environment and work on a variety of platforms, including iPads, Chromebooks, Android tablets, Mac and Windows computers, and netbooks. In addition, make certain the tools match the ability levels of your students.
  • A key part of the scientific process is the sharing, analysis and discussion of data. Consider how students’ data will be transmitted from tools, such as sensors, to their computer or tablet. Will it be done via a USB or wireless connection? Will the data be transmitted directly to the student’s device or will it go to the cloud first? Can students do this themselves or will they need teacher assistance? Allowing students to get their data faster gives them more time for analysis and discussion, which is key to building scientific understanding.
  • When possible, consider investing in multi-measure sensors that allow for the collection of multiple, simultaneous measurements in a single sensor, e.g. for areas such weather, advanced chemistry, or water quality. This not only helps keep costs down, but also helps conserve instructional time by reducing the time it takes to set up sensors and collect the data.
  • If inquiry-based instruction is new to your district, conduct professional development workshops that guide teachers to begin with more highly-structured activities and then move students, over time, to open-ended investigations where they take more responsibility for planning their activities. Each stage of this transition should informed by teachers’ assessments of students’ readiness to complete learner-led investigations.
  • Instructional resources and professional development workshops should also provide suggestions on ways to scaffold student capabilities. This will ensure that teachers can provide multiple levels of guidance and support for investigations. It will also help teachers to select the level of support that best matches their students’ skills and experiences, so they can accomplish challenging tasks.

Across the country and around the world, teachers are effectively implementing inquiry-based science instruction that takes advantage of technology tools for collecting, analyzing and visualizing data. When students “do” science, rather than simply read about it, they deepen their understanding, they develop problem-solving and critical thinking skills, and they retain more content knowledge. They are also more motivated to learn and to continue building their science literacy. This is not only critical for students who decided to pursue STEM careers, but also for life in the modern world.

Steven Korte is the CEO of PASCO Scientific, a developer of innovative teaching and learning solutions for K–12 and higher education since 1964.

TagsedchatEdtechEducationelearningk12ntchatSTEMteachered
Previous Article

Stop blaming poor parents for their children’s ...

Next Article

Minority faculty revisited: Why is America so ...

Matthew Lynch

Related articles More from author

  • Modern Parenting

    How to Help Your Child Get Through a Bad Day

    September 3, 2018
    By Matthew Lynch
  • Early Childhood & K-12 EdTechHigher Education EdTech

    What Education Leaders Look for in Edtech Product Validation

    October 26, 2017
    By Matthew Lynch
  • DiversityHBCU's

    4 ways HBCUs can prepare students for the lack of workplace diversity

    November 30, 2015
    By Matthew Lynch
  • Early ChildhoodEarly Childhood & K-12 EdTech

    My Vision For the Future of Early Childhood Education

    August 8, 2018
    By Matthew Lynch
  • Ask An ExpertTrending Topics

    The A-Z of Education: Curriculum and Instruction

    July 10, 2017
    By Matthew Lynch
  • EdTech & InnovationTrending Topics

    Are Teachers Ready for Virtual Reality in the Classroom?

    December 29, 2017
    By Matthew Lynch

Search

Registration and Login

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

Newsletter

Signup for The Edvocate Newsletter and have the latest in P-20 education news and opinion delivered to your email address!

RSS Matthew on Education Week

  • Au Revoir from Education Futures November 20, 2018 Matthew Lynch
  • 6 Steps to Data-Driven Literacy Instruction October 17, 2018 Matthew Lynch
  • Four Keys to a Modern IT Approach in K-12 Schools October 2, 2018 Matthew Lynch
  • What's the Difference Between Burnout and Demoralization, and What Can Teachers Do About It? September 27, 2018 Matthew Lynch
  • Revisiting Using Edtech for Bullying and Suicide Prevention September 10, 2018 Matthew Lynch

About Us

The Edvocate was created in 2014 to argue for shifts in education policy and organization in order to enhance the quality of education and the opportunities for learning afforded to P-20 students in America. What we envisage may not be the most straightforward or the most conventional ideas. We call for a relatively radical and certainly quite comprehensive reorganization of America’s P-20 system.

That reorganization, though, and the underlying effort, will have much to do with reviving the American education system, and reviving a national love of learning.  The Edvocate plans to be one of key architects of this revival, as it continues to advocate for education reform, equity, and innovation.

Newsletter

Signup for The Edvocate Newsletter and have the latest in P-20 education news and opinion delivered to your email address!

Contact

The Edvocate
910 Goddin Street
Richmond, VA 23230
(601) 630-5238
[email protected]
  • situs togel online
  • dentoto
  • situs toto 4d
  • situs toto slot
  • toto slot 4d
Copyright (c) 2025 Matthew Lynch. All rights reserved.